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Abstract. A quasi-quantum-mechanical percolation model, which imitates the process of 
oil displacement by water from the oil reservoir, is suggested. The Hamiltonian describing 
the irreversible evolution process of the percolation lattice, which models the oil reservoir, 
is constructed. With the help of the computer calculations for the rectangular plane lattice, 
the time development of the process under consideration is observed. We consider the 
critical behaviour within the time interval t ,  S r s 1, where time moment t ,  corresponds to 
the percolation phase transition (when water appears in the production wells for the first 
time) and time moment r2  corresponds to the moment when the development of the 
percolation process is stopped (when only water begins to flow through the production 
wells). 

1. Introduction 

In the past several years the mathematical apparatus of percolation theory has been 
developed for the description of the results of the oil reservoir irrigation process [ 1-41, 
The development of such a new approach has very significant applications as it allows 
us to consider the oil production problem from the general position of the second-kind 
phase transition theory. The previous investigations [ 1-41 concerned only the static 
aspects as they were devoted to the description of the oil reservoir irrigation process 
results. The approach proposed in this paper describes the time development and 
therefore gives the dynamical picture of the irrigation process. This approach can be 
called quasi-quantum-mechanical because the information about the oil reservoir at 
the arbitrary time t is given by some state function Y ( t )  which has a great deal in 
common with the quantum mechanical wavefunction. The evolution of P( t )  is deter- 
mined by the equation of the Schrodinger type where the operator playing the role of 
the Hamiltonian is of the special choice. It is worth noting that some dynamical 
theories of the growth processes based on the Marcovian field-theoretical approach 
have already been developed in [5,6], but are not acceptable for our purposes. 

2. Dynamical model of the percolation process 

Let us consider the oil and water as immiscible and incompressible fluids and the oil 
reservoir as a network of pores containing oil which are connected by narrow capillary 
channels. This system is modelled by the integer lattice, the sites of which are identified 
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with pores and the bonds with capillary channels of the oil reservoir. The probability 
field is introduced on the lattice by ascribing to every lattice site with number j the 
probability PJ that the water having reached this site will be able to displace the oil 
from it. The probability PJ directly depends on the local geological and physical- 
chemical properties of the oil reservoir and on the pressure gradient. The important 
characteristic of such a random field is the potential percolation probability P which 
is equal to the number of the potentially available sites (the sites from which it is 
possible to displace the oil by the water, or for which P, 3 P,) divided by the total 
number of the lattice sites. The percolation lattice constructed in such a way is the 
typical structure in which the particular second-kind phase transition, connected with 
the phenomenon of percolation through a disordered conducting media, can occur. 

In the concrete calculations the rectangular plane lattices of the final size are usually 
considered. The upper row of such a lattice is identified with the injection wells and 
the lower row with the production wells. In such a system we interpret the fact that 
the water reaches the production wells as the realisation of the percolation. I t  is also 
possible to use another variant of the injection and production wells arrangement. 

The rather complicated mathematical apparatus for the description of the dynamical 
percolation will be offered below. The necessity of its usage is connected with the 
need to obtain not only the numerical results but also the qualitative analytical ones. 
The usage of the spin algebra formalism for this purpose will allow us to exploit the 
properly developed methods of the quantum theory of magnetism in order to obtain 
the analytical results afterwards. Thus the state of every site j of the percolation lattice 
will be described by the double-meaning spinor function x j s2  where xj = (1, O), corre- 
sponds to the site occupied by the oil and xf = (0, l), to the site occupied by the water. 
The state of the whole oil reservoir at the time moment t is given by the function: 

where N is the total number of lattice sites and mj = 1,2. The total space X of the 
functions x,7 of N sites consists of 2 N  functions of the kind ( l ) ,  each of them differing 
from the others by its dependence on its own set { m j ,  j = 1 , .  . . , N } .  Since the spinor 
functions form the orthonormal basis (xj” I x,”) = a,,, where ( 1 ) is the scalar multiplica- 
tion symbol, the functions *( t )  possess the same property. In the space of the spinor 
functions xfS2 it is possible to introduce the basis spin operators S:, SjY, Si of the spin 
S = or their following linear combinations: 

which are more convenient for our purposes. The operators p.J”b (a, b = 1,2) possess 
the following properties: 

p;bpUfd = p;bXf = abcX; (3) 
Thus it can be seen here that, for example, the operator pf’  transfers the state x: into 
the state x; (oil into water) and pf2 into zero, while the operator pf2 does not change 
the state x: and transfers the state x,! into zero and so on. 

Let us define the operators: 
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where the sum over k is the sum over the site j nearest neighbours ( k  = j i  1). These 
operators have the following properties: 

(F ;2 )2  = P;2 p;-7T1 = 7TJ *JF;2  = FCLI 2 2  ( 5 )  
7 ,  

Thus the operator H, = r,flJ transfers the state xj into x: (oil into water) if in the 
nearest environment of the site j there is a site j + k which is in the state x : + k  (i.e. is 
occupied by the water). Now it is possible to come to the conclusion that the operator 

H = ~ H ,  
( J )  

will define the evolution process of the percolation lattice (oil reservoir) if we consider 
it as the Hamiltonian operator of the Schrodinger equation 

d"(t) 1 
d t  r 

- H*(t)  ( 7 )  

where ( j )  means the totality of the potentially opened sites from which the oil can be 
displaced under the given geological and physical-chemical conditions, and r is the 
average time between two elementary acts of oil displacements from the neighbouring 
pores. The Hamiltonian in form (4) and (6) is not the Hermitian operator and this 
fact ensures the irreversibility of the evolution process which is described by equation 
(7) (irreversibility of the oil reservoir irrigation). 

The solution of equation (7)  can be presented in the form 

V( t )  = S (  t ,  O)*(O) 

where " ( 0 )  is defined by the initial state of the percolation lattice. Expansion (9) of 
exponent (8) can be formally extended till infinity. However, as will be seen later, 
Hamiltonian (6) of the model under consideration is constructed in such a way that 
the percolation lattice evolution is stopped at some stage. From the mathematical 
point of view it is equivalent to the condition 

for some critical value of n,. 
If the potential percolation probability P is smaller than some critical probability 

P, which is typical for the percolation lattice of the chosen kind, then the process of 
percolation in such a system does not occur with statistical validity (the values of P, 
can be found in [5] for different lattices). In this case equation ( 7 )  describes the 
irrigation process only for that part of the percolation lattice which lies near to the 
first row of sites (injection wells). When percolation takes place ( P a  P,) there are 
two notable events. The first event is the reaching by the water at time t ,  of the lower 
lattice border sites corresponding to the row of production wells. The second event 
is the end of the oil displacement process at time t z .  It is evident that t2  3 t ,  . 

Now it is necessary to define the rules of the percolation lattice state functions 
normalisation when the operators S (  1,O)  have already acted. In order to explain the 
difficulties and the suggested solution of the problem it is convenient to consider a 
fragment of the plane percolation lattice as in figure 1, where the sites potentially 
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Figure 1. A fragment of the percolation lattice. The sites potentially available for percola- 
tion are encircled with bold lines while unavailable sites are encircled with broken lines. 

available for percolation are encircled by bold lines. Their number corresponds to the 
potential percolation probability P = 0.55. For the configuration of percolation sites 
shown in figure 1 the Hamiltonian is defined as 

H = H, = HI + H,+ H5+ H7+ Hp,+ H,o+ HI*+ Hl5+ HI,+ Hl8+ H20 
( J )  

There are three sites in the upper row which are irrigated at the initial moment so that 
the initial state of the oil reservoir is given by the function 

2 2 2  q ( 0 )  = x1 x 3 x s  n* x: 
I 

In our notation the asterisk over the product sign means that in the product llI,*,y' 
there are the state functions x 1  for all sites of the percolation lattice with the exception 
of sites whose state functions are written on the left side of the product sign HT. 

Let us consider the action of Hamiltonian (1 1) on the oil reservoir state function 
(12). Guided by definitions (3), (4) and ( 6 ) ,  we obtain: 

It is obvious that, using the standard quantum-mechanical normalisation of the state 
functions q( T), q(27)  and so on, then it can be found that, for example, at time t = 27 
there will be twice as much water in states x?, xi and x: than in states x:, xi, x:,, 
and x : ~ .  Hence it follows that, the more ramified is the network, the greater are the 
differences in the amount of water between the common channel (in the case under 
consideration f o r j  = 1,3,5)  and the ramified part (for j = 7,8, 10, 15) of the percolation 
lattice. This is the reason why the standard quantum-mechanical normalisation of the 
oil reservoir state functions is not suitable when one has accepted the interpretation 
of the states xf and xs as the symbols which describe the only situation when the site 
j is completely occupied by the immiscible and incompressible fluids-oil or water. 

In accordance with the accepted model of the oil reservoir description, state 
functions (13) and (14) must describe such oil reservoir states which have the same 
amount of water during the irrigation process in the sites with j = 1,3,5,7 at the time 
t = T and in the sites with j = 1,3,5,7,8,  10, 15 at the time t = 27 when the other sites 
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are still occupied by the oil. The following state functions, taken in the form ( l ) ,  
completely correspond to this situation: 

(13’) 2 2 2 2 2  
~~~)=x1x3x5xsxlon*x; 

I 

2 2 2 2 2  *(2T) =xIx3x5xsxlox:5 n* xf . 
I 

(14’) 

It is possible to reach the identification of expressions (13) and (13’), (14) and (14’), 
and so on, if we consider that the sum of two arbitrary state functions (taken at the 
same time moment) = n,”=, xp and V I 2  = n:, x? is the state function VI = II:, x? 
where for every j the function x? = x”JOx> is defined from xp and xq with the help 
of the following binary composition rules: 

x:ox: =x: xjox; = x; x; 0 XI2 = x; . (15) 

When such composition rules are taken into account the set of 2N possible state 
functions of the kind (1) forms at every time moment the commutative semigroup with 
the identity element VI, = H E ,  x: . (If we introduce in this semigroup the multiplication 
operation through the summation operation, as is usually done in set theory, then the 
functions set of the kind (1) would form the Boolean algebra.) The attaching to this 
set ( 1 )  the properties of the commutative semigroup ensures a normalisation of such 
state functions to be adequate for the oil reservoir model under consideration. This 
normalisation will be designated below by the letter S as composition rules (15 )  are 
the summation in the set theory. 

Solution (9) of equation (8)  displays that the percolation lattice evolution is defined 
by the action of the Hamiltonian H to the different powers on the percolation lattice 
state function. In order to analyse that action it is necessary to determine the main 
properties of the above-defined normalisation. Before doing that, we introduce several 
definitions. 

Dejnition Dl .  Let the set { j }  of L sites be picked out by some way. On this set we 
define the particular and homogeneous p-forms of the operators pf2 :  

(16) 

(17) 

22 22  
f p ( ) ( l . J ~  9 ’ ’ ’ 9 pJp)  = E:: fi p;: 

I =  1 

22 22  
f p ( p 2 2 )  = c fp(FJi 9 ‘ ‘ ‘ 1 p J p  

{I1 

where E:! 2 is the generalised Kronecker delta of rank 2p ( p  L). Due to the 
multiplication property ( 5 )  of operators puf’ any function f ( p 2 * )  defined with their 
help can be presented as an expansion in t,(p;?, . . . , pulp 22 ): 

As will be shown below, it is possible to suppose that under the S-normalisation 
conditions the coefficients C ( j , ,  . . . , j,) can be equal only to 0 or 1. 

Dejnition OZ. Let us define the effective Hamiltonian of order p by the expression 

(19) 
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where 

where ( j ,  . . . j p )  designates the cluster which consists of p neighbouring opened for 
percolation sites and ( j ,  . . . jp)*  designates the totality of sites which are the nearest 
neighbours of cluster ( j ,  . . . j p ) .  In particular, in the terms of the given definition, the 
percolation lattice Hamiltonian (6) is H = HI.  Let us define the following auxiliary 
operator: 

Dejnition 0 3 .  Let us pick out the subspaces X;, X,,,,,, and so on, from the percolation 
lattice state functions total space X. They possess the following properties: the subspace 
3 consists of the functions which always have as factor the function x; and have not 
the function xj. The subspaces consist of the functions which always have as 
factor the production xf, x;? and so on. It is evident that E X, q,J2 E 3, , q2. The 
subspaces XJI can be symbolically defined in the following way: 

3, .Ip = fI F;;R. (21) 
/ =  I 

Let us now formulate the S-normalisation properties whose proofs are given in the 
appendix. 

Property PI. The matrix elements of the Hamiltonian H in the basis (1) are real 
numbers. The S-normalisation result does not depend on the numerical coefficients 
of the items. 

Property P4. SH:V = H J q .  

Property PS. SABVE ( A + B ) V  where two cluster sets, on which the operators A and 
B are defined, have not the same sites. 

Property P6. S H 2 V  = H + HiJ?l>2) V. 
( J i  1 2 )  I 

The essential feature of the proposed scheme is in the finite time evolution. Let 
us anticipate the proof of this fact by the statement about the general structure of the 
result of the operator H "  ( n  3 1 )  action on the functions Y E  X within the bounds of 
the S-normalisation. 

Let us now prove two statements that are important for the dynamic percolation 
model theory. 
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Lemma. The general structure of the result of the operator H action on the state 
function 9 within the S-normalisation is: 

n 

S H n 9 =  C H p 9 .  
p = o  

In order to prove this lemma let us use the mathematical induction method. When 
n = 1 this lemma is satisfied identically and when n = 2 its proof is given by property 
P6. Assuming now that the lemma is true for some power n let us prove it for the 
power n + 1. By presenting the product Hntl = i ( H H n  + H " H )  as the sum of three 
existing possibilities: 

n 

p = o  
SH"+'q==S RV 

where 

( J ) ~ ( J I .  .I,,)* 

where the site j belongs to the cluster ( j ,  . . . j p ) ;  the site j does not belong to the 
clusters ( j ,  . . . j,) and ( j ,  . . . j p ) *  and the site j belongs to the cluster ( j ,  . . . j,,)*. 

Let us consider the first sum of expression (23), and let, for example, the site j +  n, 
from the nearest environment of site j ,  belong to the cluster ( j ,  . . . j,) (our discussions 
do not change when any number of sites from the nearest environment of the site j 
belongs to the cluster ( j ,  . . . j p ) ) .  Then we obtain: 

f [ 2;; . I,,) + !!I.. , J p  j i : : 1 
(PI 22 

= H ~ j l . . . ~ . . . ~ + k . . . ~ p ) ( t +  e ~ , , + k ) + ; T ~ l  * * . TJ * . . k j + k  . . . Tj,nj l . . . ~ . . . ~ + k  .,. j p  * (24) 
Taking into account properties P1 and P3, and also the fact that for every m the 
expression pJ xJ E njxY is valid, it is possible to obtain that: 

That is why the first sum in expression (23) is equal to H p 9 .  
Let us consider the second sum of expression (23). Because of the fact that there 

are not the same sites in the definition of the operators Hlji and H{I! , . Jp)  it is possible 
to use property P5 from which it follows that: 

(26) 
So it can be seen that the action of items, which are the members of the second sum 
in expression (23), has already been taken into account in the first and in the pth terms 
of series (23) and that is why they can be omitted in the S-normalisation. 

Let us consider the third sum of expression (23). And let, for example, only one 
site j +  k from the nearest environment of the site j be the member of the cluster 
( j ,  . . . j,) (our discussions do not change when any number of the neighbours of site 
j are the members of the cluster ( J ,  . . . j p ) ) .  Thus we obtain: 

22 m 

St[HIj:HI;j..j,,)O ~ l [ ! . . , ~ > H { j ; I 9  = HI[!..jp>*. (25) 

sl[Hl::H![!..jp,@ H ~ ~ ! . . J p ) H ~ ~ ' ~ l V I  E 1H;j.I + ~ t J ! . . j ~ , I 9 *  

i [ H ~ j j ) H ~ ~ , ! , . j p )  + ~ : [ ! . . j ~ ) ~ { j ; l  
- - Tj l  * . . Tj .  . . TJ+k . * T ~ p e ~ l . . . ~ + k . . . ~ p . j e j . j + k  

22 
+fTj ,  . . .  r j * * *  (Tj+k+pj+k) . . .  Tj,,ej l . . . j + k . . , j p ~ j  

+iTj, * * (Tj  + PJ 22 ) 3 T j + k  * TjPej,~+k +fTj ,  . . pj 22 * Tj+k . . . T j p  

(27) 
22 

+iTj, . . . T j .  * pj+k . . . TjD. 
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Omitting as usual in the S-normalisation the numerical coefficients and taking into 
account that: 

(28) S (  Tj 0 pf2)x1" = TjXl" 

we come to the conclusion: 
( 1 )  qf 'f[ H{;)) H::' J p )  @ J p ) H ( J )  1 

E T j I  . . * T J .  . . T i + k  . ' . T J p [ e ] $  J + k  J p , J e J . J + k +  J + k  J p  J 

+ eJ,]+k + H:;' J + k  J,,)' H : P l '  / J p ) l q f *  (30) 

Now it is clear that two last items in expression (30) can be omitted as their action 
has already been taken into account in the previous term 

st[ HJ:;H(P-~) ( J l  J P - , ) @  H i P ~ - : ' p  1)~!;;1* 

of series (23). Taking both that and property P3 into consideration and the fact that 

J + k  I p l J + e J r J + k = L R J ~  J J + k  Ip (31) 

we obtain 

S$[Hij:H{:'  j P ) @  H::l' ~ ~ ) ~ i ; ) ) ] q f  = H/:+:' J + k  j , , )q f .  

S H P + ' q  = S ( H P +  Hp+l)qf (33) 

(32) 

Summing up all conclusions concerning the items of expression (23) one can see that: 

which was to be proved. 

Theorem. For every finite percolation lattice there is the such critical value of the order 
n, that: 

SH"c+'V = SH"cqf. (34) 
It follows clearly from expression (23) that the operators H of powers n + 1  and n 
differ from each other by the operator: 

Hn+, = c H:;,+l;n+l> (35) 
( A  ..&+ 1) 

which contains the sum over the clusters, where every cluster consists of n + 1 neighbour- 
ing sites opened for percolation. Let us consider the finite percolation lattice with N 
sites and let NP sites ( P  < 1) be potentially opened for percolation under given 
conditions. It is possible to conclude that the theorem is proved at least for n,= NP 
as potentially percolating clusters with n = NP + 1 are absent in the percolation lattice. 
In reality NP is the upper limit for n,. Practically the potentially percolating sites do 
not form the united cluster in every percolation lattice. They are distributed among 
several clusters which differ from each other by their form, size and which are not the 
neighbouring ones (i.e. these clusters are the groups of neighbouring percolating sites 
where none is the nearest neighbour for the potentially percolating sites from other 
groups). This is the reason why n, d max( Nk), where Nk is the number of sites in the 
k's cluster. At least it can be seen from the construction of Hamiltonian ( 6 )  that the 
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percolation lattice evolution (irrigation of the oil reservoir) is possible only for those 
sites which have the states x: as nearest neighbours (i.e. the sites are occupied by the 
water). So only those clusters take part in the percolation lattice evolution whose 
neighbours are in the states x,’ at the initial moment. Thus one can conclude finally, 
that in the real percolation lattice evolution n ,  = max( NL) where N ;  is the number of 
sites in the k’s cluster which is connected to the sites irrigated at the initial moment. 

3. The computer numerical modelling of the dynamic percolation 

The suggested model of the oil displacement by the water was mathematically realised 
on the rectangular plane lattice which was numbered by two sets of indexes i and j .  
The percolation lattice states at different time moments t = n7 were considered. The 
percolation lattice state functions at those moments were defined by the expression: 

The initial state was, for example, chosen in the form: 

N L  Nr N) 

W O ) =  n x:, n n xi. (37)  
J = I  1 = 2 J = 1  

This corresponds to the situation when the percolation lattice irrigation starts from its 
upper horizontal border. The vertical borders were considered as the impermeable 
ones. The process of percolation through the lattice was treated as the reaching of the 
lower border by the water. For the given value of sites potentially opened for the oil 
displacement, N p  = PN, N, was defined where N,  and N,,, were the numbers of sites 
in the columns and lines of the percolation lattice. These Np sites were randomly 
distributed on the percolation lattice with the help of computer. 

The previous study of such percolation lattice characteristics as a function of P, 
has shown that when P is equal to some critical value P, the second-kind phase 
transition is such that the water percolates through the percolation lattice independently 
of its size. When P is close to P, all characteristics of the percolation lattice (oil 
reservoir) begin to depend crucially on the difference I P - Pel. In particular the amount 
of the displaced oil at the first percolation moment can be present in the following way: 

when P <  Pc, 
when P a  P,, 

where A ,  is the coefficient of proportionality and a, is the critical index. 
The dynamic percolation model introduced above allows us to describe the evolution 

of the percolation lattice states in time (in the process of oil displacement by water). 
All the oil reservoir characteristics acquire the dependence on time t .  In particular 
the amount of displaced oil Q ( P )  is now described by the function Q ( P ,  1 ) .  The 
previously known [3,4] percolation transition (38)  takes place in the dynamic theory 
at the time t l  so that Q ( P ,  t , )  = Q , ( P ) .  The study o f  the evolution of the oil reservoir 
states allows us to reveal once more the manifestation of the same phase transition at 
the time moment t 2 3  t l  when the further oil displacement is stopped under the same 
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external conditions. The total amount of the displaced oil Q 2 ( P )  = Q ( P ,  t 2 )  reveals 
also the analogous critical behaviour: 

when P <  Pc2 
when P a  P,,. Q A p )  = (O A,( P - Pc2)-"2 (39) 

Now we can note that the theorem of the previous section shows the existence of the 
time moment t ,  when the oil displacement process is stopped. It is clear from the 
general point of view that the critical probabilities and the critical indexes are the 
same in the both time moments t ,  and t2, while our computer calculations give the values 

Pc1 = P,, = P, = 0.5983 ( Y I  = a2= (Y =0.1386 (40) 

which are the same within the accuracy of calculations. The critical behaviour of type 
(38) and (39) with the same values o f p  and a can be expected for the other intermediate 
time moments t ,  s t S  t , .  The time moments t l  and t2 define the boundaries of the 
time interval during which the phase transition is taking place. The illustration of the 
square lattice evolution in the dynamical percolation model is given in figure 2. This 
percolation lattice corresponds to N ,  = Ny = 60 and to one of the possible random 
distributions of potentially percolating sites, the amount of which is defined by P =  
0.605. In figure 2 the first phase transition takes place when t l  = 877 and Q,(0.605) = 
0.5067. This phase transition lasts till t2 = 1007 and Q2(0.605) = 0.5447. The percolation 
in the same lattice with P = 0.605 but with changed initial conditions is illustrated in 
figure 3. Here at the initial moment t = 0 only the centre of percolation lattice (square 
3 x 3) is considered as the irrigated region and the fact of percolation is understood 
as the reaching of the lattice boundary bonds by the water. For this particular realisation 
of the distribution of potentially percolating sites on the percolation lattice we obtain: 

t l  = 547 Q(0.605) = 0.1935 

t z  = 1017 Q,(0.605) = 0.3206. 

However, these figures do not have the statistical validity which is inherent to their 
averaging result over the large number of numerical experiments. The curves of the 
probability distributions W(Q, )  and W ( Q J  are shown in figure 4. These functions 
give the probability to obtain the values Q1 and Qz in the random realisation of the 
position of potentially percolated sites on the percolation lattice. These data have 
been obtained with the help of 5000 experiments, every experiment corresponding to 
the same value of P = 0.605 for the case of percolation from the centre of the lattice 
and to the random realisation of the positions of potentially percolating sites on the 
percolation lattice. Just as expected, the numerical experiments have revealed the 
universality of the probability distribution curves when the lattice sizes change and 
P -  P, .  

Generally speaking these numerical experiments would have been carried out using 
only such models as invasion percolation with trappings. However, it is the way of 
the pure mathematical empiricism that the theory of phase transition is not used. The 
real development of the theory demands a definite mathematical apparatus in order 
to obtain analytical results similar to those which have been carried out in section 2. 

In subsequent work we will undertake the analytical and numerical investigations 
of the percolation dynamics, not only close to the critical region but also far from it. 
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Figure 2. Evolution of the percolation lattice when the irrigation starts from the upper 
horizontal border ( N ,  = N ,  = 60, P = 0.605). 
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Figure 3. Evolution of the percolation lattice when the irrigation starts from the centre 
( N ,  = N,. = 60, P = 0.605). 
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Figure 4. The distributions of displaced oil at time moments f, and 1, when irrigation starts 
from the percolation lattice centre. 

Appendix 

We give here the commentaries and proofs of the properties Pl-P6. 

PI. This property results from the fact that the operators pqb matrix elements are 
positive integers in the basis xy and from the method of construction of the operator 
HJ in the totality of the operators {p;’}. The S-normalisation independence on the 
numerical state-items coefficients results from composition rules (15). For example, 

S(xfO3xj) = s(x;oxf) =x; ( A l l  

and so on. 

P2. This property can be easily proved by presenting the operator t P ( p z 2 )  as the sum 
of kind (17) over the totality { j } L .  Then it turns out that one of the operators 
t,(p;,’, . . . , pip2) enters into the square brackets with the coefficient 2 which can be 
omitted according to the property P1. 

P3. It follows from the definitions D1 and D3 that the subspace t P + , ( p z 2 ) X c  t p ( p 2 2 ) X  
so that the result of any operator functionf(.rr, p22)  action on the subspace t p+ , (p22)X  
is contained in the subspace f( T,  p 2 2 ) t p ( p 2 2 ) X  and thus it can be omitted in P3 in the 
S-normalisation. 

P4. According to definition D1 we have: 

H,” = +,” = Tj[ t ,  (p22) + t 2 ( p 2 ’ ) ]  

where { j L }  = ( j ) * .  Now using P3 we obtain P4. 

P5. For simplicity let us consider the proof of this property with the help of an example 
when A = Hi;,)) and B = Hi;;) so that the operators Hjj:) and Hi;:) do not have the same 
sites in their definitions. Let us consider two auxiliary operators 

(A3) 22 22 22 22 ‘:,;“,2 = TJ\pJi+ki .rrJ2pJ2fk2 z:;2 = . rrJ i@li+k, f  .rrJ2pJ2fk2 
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where the sites j ,  + k ,  and j 2 +  k2 are the nearest neighbours of the sites j ,  and j 2 ,  
respectively and 

(A41 

The space of states for any pair of the percolation lattice sites, for example, for the 
sites j ,  + k ,  and j 2  + k,, can be divided into four subspaces: 

22 
T / l p f i 2 + k ,  E 7 T / 2 p 1 2 f k 2 E  

where @ is any set of the percolation lattice rest sites. Let us act on the function Y22 
by the operators Y;;2 and Z;;2: 

Taking into account that the action of these operators rr1 consists in the transformation 
of the functions x y  with any m into the functions xf and using composition rules (15) 
it is possible to obtain 

sY:,;:2Y2z = sz;1pP22 . (A81 

(A91 
However, the action of the operators Y:;2 and Z;;2 on the functions Y I 2  and Y2, is 
not the same: 

(A101 

The action of these operators on the function Y,, is the same too: 

YJ”,pP,  1 = Z;]$Y I = 0. 

Y;11 i29ab  = z ; i 2 * a b  # 0 

sY;lpP€ sz;;pP (‘41 1) 

sH:;;)H;;;)Y E S[  Hi;;)  + H:; : ) ]Y  E HY 

( a ,  b = 1, 2) .  

Thus it is possible to conclude that 

and since there are no restrictions in the choice of the indexes j , ,  j 2 ,  k ,  and k2 we 
come to the conclusion that 

( j ,  # j l +  k l ) .  (A12) 

P6. For the proof of this property let us present the operator H 2  in the following form: 

(A131 H 2 = z H j +  c’ 4 1 ~ 1 2 ’  c t ( 4 ] W 2 + 4 2 H J ~ )  
( I ?  (11)(12? (11Jz) 

where the prime on the second summation sign means that the sites j ,  and j 2  are not 
nearest neighbours. 

Due to property P4 the first sum in expression (A13) is equivalent to the Hamiltonian 

For the analysis of the second sum in expression (A13) let us use property P5 from 
which it follows that: 

S E’ HjlHl,Y E H Y  (A15) 
( 1 1 x 1 2 )  

where HI = H:;)’. 
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For the analysis of the third sum in expression (A13) it is convenient to present 
the operator flj in the form: 

where the sum over k' is taken over the nearest neighbours of the site j with the 
exception of the site j + k. Now for the nearest sites j and j + k we obtain 

Taking into account the properties of belonging: 

(A181 

(A191 

22 
Tj+kp] E Y+k Pip:? k E 4 T]T~ + k e]3]  + k k , ]  E H j H ] +  k 

properties P1, P2 and expression (A12) it is possible to conclude that 
S [ ~ j ~ ] + k ~ ] , j + k e j + k , j + t ~ ~ ~ ~ ~ k ( l + ~ ~ + k , j ) + ~ ~ ] + k ~ ~  22 ( 1  + e J , ] + k ) ] q =  S H q ~  

Now it is clear that the right-hand part of expression (A13) in the S-normalisation 
is equal to 

r 1 

This fact, according to the definition 

' J 1 , 1 2 +  e 1 2 J ,  = flliJz 

proves property P6. 
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